
17

CHAPTER 2

The Processing Language

If you are not familiar with the Processing language, read this chapter for an introduction to how to create 2D
shapes, use geometry transformations and color, and handle touchscreen input in Processing. The chapter
ends with a step-by-step example of a drawing sketch, which we will use in Chapter 3 to learn how to export
and upload an app created with Processing to the Play Store.

 A Programming Sketchbook for Artists and Designers
As we learned in the first chapter, the Processing language, together with the Processing Development
Environment (PDE), makes it easier for users who are new to programming to start creating interactive
graphics. The language has been designed to be minimal and simple for learning and yet expressive enough
to create many kinds of code-based projects, including generative art, data visualization, sound art, film, and
performance. It includes around 200 functions across different categories: drawing, interaction, typography,
etc., as well as several classes that help with the handling of form, color, and data.

The creators of Processing were also inspired by the concept of sketching: when we have an idea and
use a paper sketchbook to draw it down, we often create many iterations or variations of the original idea as
we refine it or make changes. Processing supports a similar way of working with computer code by making it
easy for us to obtain visual feedback from the code so we can quickly iterate and refine a programming idea.
This is why you will see Processing described as a “coding sketchbook” in many places. The next section
describes the basic structure in Processing that allows us to sketch with code by getting animated graphics to
the computer screen.

 The Structure of a Processing Sketch
Most of the time, we want our Processing sketches to run nonstop to animate graphics on the screen and
keep track of user input. This means that instead of running our code just one time, Processing will continue
running it repeatedly so that we can animate the visual output by programming how it changes from one
frame to the next and how it’s affected by any interaction of the user with the computer (desktop, laptop,
phone, etc.). Because of that, we call these “interactive sketches” in contrast with “static sketches” that run
just one time (we can create these with Processing too, but for now, we will focus on interactive sketches).

 ■ Note All the code examples in this chapter can be run in the Java or the Android mode, since they don’t
rely on any features of the Processing language specific to either mode. This chapter also assumes some basic
knowledge of programming, including conditions (if/else), loops (for/while), use of variables, and organizing our
code with functions, so we will not go over those concepts.

© Andrés Colubri 2023
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-9585-4_2

https://doi.org/10.1007/978-1-4842-9585-4_2

18

The structure of an interactive sketch in Processing is uncomplicated: it requires two functions, one
called setup() and the other, draw(). The setup() function will contain the code that we need to run only
one time at the beginning to set things up, and the draw() function will contain the code that generates the
visual output of our sketch and Processing will run every time it has to draw or “render” a new frame on the
screen of the computer, typically 60 times per second. Let’s use these functions to create our first animated
sketch in Processing!

A simple animation could be moving a vertical line from left to right across the screen. We do just
that in Listing 2-1, where we have both setup() and draw(). In the setup() function, we run a few initial
tasks: first, we set the size of the output window or “canvas” where Processing will draw to. In this case, we
are initializing the canvas with fullScreen(), which makes it as large as the entire screen of the computer
(or phone). Then we set the parameters of our line with strokeWeight(2), which sets the line weight
(or thickness) to 2 pixels, and stroke(255), which sets the line color to white (we will go over the use of
numbers to set color values later in this chapter). Finally, we set the value of the variable x, declared at the
top of the code, to zero. This variable holds the horizontal position of the line, and setting to zero means
placing it on the left side of the screen (also later in the chapter we will discuss about screen coordinates
in more detail). In the draw() function, we start by setting the color of the entire canvas to a tone of gray
with background(50) and then draw the line with line(x, 0, x, height). The line() function takes four
parameters: the first two (x, 0) correspond to the first point of the line, and the last two (x, height), to the
second point, so by calling this function, we get Processing to draw a line from (x, 0) to (x, height). The word
“height” is a “constant” in Processing that always represents the height of the canvas and therefore cannot
be used as a variable name by us (the Processing language includes several more constants like this; we
will learn about some of them later in this and following chapters). Because the two points have the same x
coordinate, we will get a vertical line running between the top (0) and the bottom (height) of the screen. The
last two lines of code in the draw() function control the animation: by doing x = x + 1, we are increasing
the value of the horizontal position of our vertical line by one unit; this means that the line will move to the
right one pixel per frame. If we keep adding 1 to x enough times, its value will eventually be larger than the
width of our canvas, and the line will no longer be visible. In that case, we put the line back at the left edge
of the canvas by checking if x is larger than the width and resetting to zero with if (width < x) x = 0. The
output of this sketch running on a phone is shown in Figure 2-1.

Listing 2-1. A sketch that draws a vertical line moving horizontally across the screen

int x;

void setup() {
 fullScreen();
 strokeWeight(2);
 stroke(255);
 x = 0;
}
void draw() {
 background(50);
 line(x, 0, x, height);
 x = x + 1;
 if (width < x) x = 0;
}

CHAPTER 2 ■ THE PROCESSING LANGUAGE

19

Figure 2-1. Output of the animated line sketch, running on a Pixel 4a phone

This continuous sequence of calls to the draw() function that Processing does automatically in any
interactive sketch is called the “animation loop.” Processing calls the draw() function during the animation
loop at a default frame rate of 60 frames per second; however, we can change this default using the function
frameRate(). For instance, if we add frameRate(1) in setup(), then the animation loop will draw 1 frame
per second.

Sometimes, we may need to stop the animation loop at some point. We can use the noLoop()
function for doing this and then the loop() function to resume the animation afterward. Processing
also has a boolean (logical) constant named looping, which is true or false depending on whether the
sketch is running the animation loop. We can build on top of our previous sketch to pause/resume the
line movement if the user clicks the mouse (on a desktop/laptop) or taps the touchscreen (on a phone),
as shown in Listing 2-2. This code introduces another new function from the Processing language called
mousePressed(), where we can put code that should be run only when the user presses the mouse (or taps
the touchscreen). We will see a few more interaction-handling examples in this chapter and then will
deep-dive into touchscreen interaction more specific for mobile development in Chapter 5.

Listing 2-2. Pausing/resuming the animation loop

int x = 0;

void setup() {
 fullScreen();
 strokeWeight(2);
 stroke(255);
}

void draw() {
 background(50);
 line(x, 0, x, height);
 x = x + 1;
 if (width < x) x = 0;

}

CHAPTER 2 ■ THE PROCESSING LANGUAGE

20

void mousePressed() {
 if (looping) {
 noLoop();
 } else {
 loop();
 }
}

We can also write static sketches without setup/draw, which are useful if we only want to create a
fixed composition that does not need to be animated. Processing runs the code in these sketches only
one time. Listing 2-3 contains a simple static sketch that draws the white circle in Figure 2-2. Here, we
use the function ellipse() to draw a circle centered at coordinates (400, 400) and width and height equal
to 300 pixels (by setting different width and height values, we would get an ellipse of any proportions
we like.) We use the fill() function to paint the interior of the circle with a purple color. We also use the
size() function, which allows us to set the width and height of the output canvas. We apply this function
instead of fullScreen() if we only want to use an area of the device’s screen for drawing and interaction.
Processing will paint the pixels outside of the drawing area with a light gray color, as seen in Figure 2-2,
and we will not be able to change this color. Tapping on this area will not result in any interaction events
with the sketch.

Listing 2-3. Static sketch without setup() and draw() functions

size(1000, 1000);
background(255);
fill(150, 100, 250);
ellipse(500, 500, 400, 400);

Figure 2-2. Output of the static sketch in Listing 2-3

 Drawing with Code
We just saw in the examples from the previous section how the Processing language allows us to “draw with
code.” Even though these examples were very simple, they already point to some general concepts for code-
based drawing in Processing. First, we need to specify the coordinates of the elements we want to draw on
the screen. Second, there are functions, such as line() and ellipse(), that allow us to draw various shapes

CHAPTER 2 ■ THE PROCESSING LANGUAGE

21

by setting numerical values that define their form, size, and position. Third, we can set the visual “style” of
these shapes (e.g., stroke and fill color) by using functions like fill(), stroke(), and strokeWeight(). In
the next sections, we will delve into these techniques in more depth to learn how to draw different kinds
of shapes.

 Coordinates
One of the most important concepts in code-based drawing is knowing how to locate points on the
computer screen using numeric coordinates. Processing draws the graphical output of our code into a
rectangular grid of pixels, numbered from 0 to width-1 along the horizontal direction (the x axis) and 0 to
height-1 along the vertical direction (the y axis), illustrated in Figure 2-3. As we saw before, we can set the
precise width and height of this grid by using the size() function with our desired values as arguments. If we
use the fullScreen() function instead, then the width and height of the grid will be automatically set to the
width and height of the entire screen of our device.

width-10
0

1 2

1
2

x-axis
...

height-1
...

pixel (1, 2)

y-axis

Figure 2-3. Diagram of the screen’s pixels

The X coordinates run from left to right, while the Y coordinates run from top to bottom. So the pixel
(0, 0) represents the upper left corner of the screen, and the pixel (width-1, height-1) represents the lower
right corner. The arguments of most of the 2D drawing functions in Processing refer to the pixel coordinates
of the screen. Processing also offers two internal constants, conveniently called width and height, that hold
the values we set in the size() function or determined automatically when using fullScreen(). The following
“toy” sample code, where we set a very small output size so we can see each single pixel, would produce the
output in Figure 2-4 (although the actual output of running this code on a computer would be so small that
we would likely not be able to differentiate its parts):

size(12, 8);
stroke(200, 0, 0);
fill(100, 200, 100);
rect(2, 1, width - 1, height - 2);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

22

Figure 2-4. Pixels covered by a stroked rectangle in Processing

We should set the size of the shapes we draw with Processing according to the constraints of the screen
size. In general, it is recommended to use the width and height constants when referring to the size of the
screen instead of entering predetermined values, because the width and height of our output will likely
change between devices, especially if we use the fullScreen() function. Even when we set the width and
height in the size() function, if we later change the arguments of size(), we would then need to go through
the code updating any references to the original width and height values. This won’t be necessary if we use
the width and height constants. The code in Listing 2-4 provides a demonstration of this technique. With this
code, we generate a rectangular checkboard of 4×4 by drawing rectangles that have size equal to a quarter
of the width and height of the output canvas. The result is shown in Figure 2-5, as it would appear on a Pixel
4a phone. If we change the values in size(1000, 1000) to something else, the result would still be a grid of 4×4
rectangles, because those rectangles will be resized automatically according to the value of width and height.

Listing 2-4. Using screen coordinates

size(1000, 1000);
noStroke();
fill(255);
background(0);
rect(0, 0, width/4, height/4);
rect(width/2, 0, width/4, width/4);
rect(width/4, height/4, width/4, height/4);
rect(3*width/4, height/4, width/4, height/4);
rect(0, height/2, width/4, height/4);
rect(width/2, height/2, width/4, width/4);
rect(width/4, 3*height/4, width/4, height/4);
rect(3*width/4, 3*height/4, width/4, height/4);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

23

Figure 2-5. Using screen coordinates to draw a grid of rectangles

 Form
All the shapes we draw in Processing have a form in two or three dimensions. One way to think of a shape
is as a perimeter or boundary that separates the inside of the shape from the outside. We already saw that
Processing includes functions to draw common shapes such as rectangles or ellipses by providing the
coordinates of their center and size. Processing will automatically construct the perimeter of these shapes
for us. But to construct the perimeter of an arbitrary shape in Processing, we need to explicitly provide
the coordinates of the vertices alongside the perimeter. We can do this by listing the vertices between the
beginShape() and endShape() functions as shown in Listing 2-5, whose output is presented in Figure 2-6.

Listing 2-5. Using beginShape() and endShape()

size(600, 300);

strokeWeight(2);

// Draw a rectangle in the bottom of the screen
beginShape();
vertex(5, 250);
vertex(590, 250);
vertex(590, 290);
vertex(5, 290);
endShape(CLOSE);

// Draw a star-like shape in right side
beginShape();
vertex(330, 25);
vertex(390, 90);
vertex(510, 10);
vertex(460, 120);
vertex(510, 270);
vertex(410, 180);
vertex(310, 270);
vertex(360, 150);
endShape(CLOSE);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

24

// Draw a small triangle right above the star shape
beginShape();
vertex(350, 30);
vertex(410, 30);
vertex(390, 75);
endShape();

ellipse(70, 80, 70, 70);

Figure 2-6. Composition created by drawing several shapes

We can learn a few important lessons from this example. First, shapes are drawn on top of each other
according to the order they appear in the code; this is why the rectangle in the bottom, which is the first
shape to be drawn, is partially obstructed by the star-like shape, which is drawn afterwards. Second, shapes
can be open or closed. When a shape is open, the stroke line that goes around its perimeter will not connect
the last and the first vertices, as we can see in the triangle shape. But if we add the argument CLOSE in the
endShape() function, which is the case for the two first shapes, the stroke line will wrap around and result in
an uninterrupted boundary delineating the shape. Third, we can combine common (also called “primitive”)
shapes drawn with functions like ellipse() or rect() with arbitrary shapes drawn with beginShape/endShape.

By applying some basic trigonometry, we can draw shapes that are regular polygons. The vertices
alongside the perimeter of a regular polygon have coordinates x = r * cos(a) and y = r * sin(a), where
r is the radius of the circumference, sin() and cos() are the sine and cosine functions, and a is an angle
between 0 and 360 degrees (for a great intro/refresher about trigonometry, check Chapter 3 from Daniel
Shiffman’s book The Nature of Code, available online at https://natureofcode.com/book/chapter-3-
oscillation/). For example, in Listing 2-6, we draw three regular polygons: a square, a hexagon, and an
octagon.

Listing 2-6. Drawing regular polygons

size(900, 300);

fill(200, 100, 100);
beginShape();
for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/4) {
 float x = 150 + 100 * cos(angle);
 float y = 150 + 100 * sin(angle);
 vertex(x, y);
}
endShape(CLOSE);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

https://natureofcode.com/book/chapter-3-oscillation/
https://natureofcode.com/book/chapter-3-oscillation/

25

fill(100, 200, 100);
beginShape();
for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/6) {
 float x = 450 + 100 * cos(angle);
 float y = 150 + 100 * sin(angle);
 vertex(x, y);
}
endShape(CLOSE);

fill(100, 100, 200);
beginShape();
for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/8) {
 float x = 750 + 100 * cos(angle);
 float y = 150 + 100 * sin(angle);
 vertex(x, y);
}
endShape(CLOSE);

Here, we use a for loop to iterate over the angle that gives us the polygon vertices alongside its
perimeter. In Processing, because it’s built on top of the Java language, we can use all the control structures
from Java (if/else, for, etc.) that we need for code-based drawing. So in this loop, we increase the angle
variable by a fraction of 2π (which is 360 degrees expressed in radians and represented in Processing by the
TWO_PI constant) until we go around the entire perimeter of the polygon, calculating its vertices with the
cos/sin formula at each value of the angle. We can see the output of this code in Figure 2-7.

Figure 2-7. Output of the polygon code example

 Color
Color is a fundamental element of visual design, and Processing provides many functions to let us set
the color of the interior of our shapes (the fill color) and their edges (the stroke color), in addition to the
background color of the entire output canvas.

By default, we can set colors using RGB (red, green, and blue) values between 0 and 255, as illustrated
in the code of Listing 2-7 and its output in Figure 2-8. As we saw at the beginning of this chapter, if we pass
a single value to the background(), fill(), or stroke() function, we will get a gray color (with the extremes of
black and white when the value is 0 and 255, respectively). This is equivalent to passing the same number
(e.g., (0, 0, 0)) as the three RGB values.

CHAPTER 2 ■ THE PROCESSING LANGUAGE

26

Listing 2-7. Setting fill and stroke colors using RGB values

size(600, 300);
strokeWeight(5);
fill(214, 87, 58);
stroke(53, 124, 115);
rect(10, 10, 180, 280);
stroke(115, 48, 128);
fill(252, 215, 51);
rect(210, 10, 180, 280);
stroke(224, 155, 73);
fill(17, 76, 131);
rect(410, 10, 180, 280);

Figure 2-8. Output of setting stroke and fill RGB colors

We can also set an optional fourth parameter in the stroke() and fill() functions. This parameter
represents the transparency or “alpha value” of the color and allows us to draw semitransparent shapes, as
it is demonstrated in Listing 2-8, with its output in Figure 2-9. If we are using a single number to paint with a
gray hue, Processing will understand the second parameter in stroke() or fill() as the alpha value.

Listing 2-8. Using color transparency

size(600, 600);

background(255);

fill(0, 0, 255);
ellipse(525, 300, 150, 150);

fill(0, 255, 0, 120);
ellipse(450, 300, 270, 270);

fill(255, 0, 0, 50);
ellipse(300, 300, 500, 500);

fill(255, 0);
ellipse(300, 300, 600, 600);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

27

Figure 2-9. Output of setting alpha values in fill()

As we have seen so far, we can draw shapes of different kinds (points, lines, polygons) and set not
only their fill and stroke color but other style attributes or parameters as well. We used the stroke weight
before, but there are many more attributes we will learn about later. We can think of these attributes as
“style parameters” that once they are set, they affect everything drawn afterward. For example, each circle
in Listing 2-9 has a different fill color, but if we comment out the second fill() call, then the first and second
circles will be red, since the fill color set at the beginning affects the first two ellipse calls. Figure 2-10 shows
the outputs of this sketch in these two situations, with the left half beginning the output with the second fill()
enabled and the right half showing the output of the second fill() commented out.

Listing 2-9. Setting the fill color attribute

size(460, 200);
strokeWeight(5);
fill(200, 0, 0);
stroke(255);
ellipse(100, 100, 190, 190);
fill(255, 0, 200); // Comment this line out to make second circle red
stroke(0);
ellipse(250, 100, 100, 100);
fill(0, 200, 200);
ellipse(380, 100, 150, 150);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

28

Figure 2-10. Effect of the calling order of the fill() function

Even though we can create almost any imaginable color using the RGB values, it can be hard to find the
right combination of numbers for the color we need. Processing includes a handy Color Selector tool to help
us pick a color interactively, which we can then copy into our sketches as RGB values. The Color Selector is
available, alongside any other installed tool, under the “Tools” menu in the PDE (Figure 2-11).

Figure 2-11. Color Selector tool

 ■ Note We can also specify colors in hexadecimal (hex) format, often used in web development, that is,
fill(#FF0000) or stroke(#FFFFFF). The Code Selector tool provides the selected color in hex format as well.

 Applying Geometric Transformations
So far, we have learned how to draw shapes and paint them with fill and stroke colors. In addition to all
of this, Processing allows us to move our shapes around and change their size by applying translations,
rotations, and scaling transformations (Figure 2-12).

CHAPTER 2 ■ THE PROCESSING LANGUAGE

29

translate rotate scale

Figure 2-12. The three types of geometric transformations

Listings 2-10, 2-11, and 2-12 show applications of the translate(), rotate(), and scale() functions that we
can use to apply translations, rotations, and scaling to any of the shapes we draw in our code. In all of them,
we put the background() function in setup(); in this way, the canvas is cleared only once at the beginning,
and so we can see the traces of the shapes as they move across the screen in each frame. The outputs of these
examples are in Figure 2-13.

Listing 2-10. Translation example

float x = 0;

void setup() {
 size(400, 400);
 background(150);
}

void draw() {
 translate(x, 0);
 rect(0, 0, 300, 300);
 x += 2;
 if (width < x) x = -300;
}

Listing 2-11. Rotation example

float angle = 0;

void setup() {
 size(400, 400);
 background(150);
}

void draw() {
 rotate(angle);
 rect(0, 0, 300, 300);
 angle += 0.01 * PI;
}

CHAPTER 2 ■ THE PROCESSING LANGUAGE

30

Listing 2-12. Scaling example

f float s = 0;

void setup() {
 size(400, 400);
 background(150);
}

void draw() {
 scale(s);
 rect(0, 0, 10, 10);
 s += 1;
 if (100 < s) s = 0;
}

Figure 2-13. Outputs of the translation (left), rotation (center), and scale (right) examples

The result of applying a single translation, rotation, or scaling transformation is easy to understand;
however, we may find harder to predict the effect of many transformations one after another. A way that
could be helpful to think about geometric transformations is that they change the entire coordinate system
in the Processing canvas. For instance, if we apply a translation of 20 units along the x axis and 30 units along
the y axis and then apply a rotation, the shapes will rotate around point (20, 30) instead of (0, 0), which is the
default center for 2D rotations. But if the rotation is applied before the translation, then the X and Y axes will
be rotated, and the translation will be applied along the rotated axes. As a result of this, if we draw a shape at
the end of a sequence of translate(), rotate(), and scale() calls, its final position will be different if we modify
the order of the transformations. Figure 2-14 illustrates this situation with a rectangle drawn after translate()
and rotate() calls in different orders. Even though this concept can be difficult to fully grasp at the beginning,
it will become clearer with practice.

CHAPTER 2 ■ THE PROCESSING LANGUAGE

31

3 - rect

1 - rotate

2 - translate

1 - translate

2- rotate

3 - rect

Figure 2-14. The order of geometric transformations affects the result

We can save the current transformation “state” with the pushMatrix() function and restore it with the
corresponding popMatrix() function. We must always use these two functions in pairs, which allow us to
create complex relative movements by setting transformations only to specific subsets of the shapes. For
example, Listing 2-13 generates an animation of an ellipse and square rotating around a larger square placed
at the center of the screen, with the smaller square also rotating around its own center. Figure 2-15 shows a
snapshot of this animation.

Listing 2-13. Using pushMatrix() and popMatrix()

float angle;

void setup() {
 size(400, 400);
}

void draw() {
 background(170);
 translate(width/2, height/2);
 rotate(angle);
 rect(0, 0, 70, 70);
 pushMatrix();
 line(0, 0, 130, 0);
 translate(130, 0);
 rotate(2 * angle);
 rect(0, 0, 30, 30);
 pushMatrix();
 rotate(angle);
 line(0, 0, 50, 0);
 ellipse(50, 0, 15, 15);
 popMatrix();

CHAPTER 2 ■ THE PROCESSING LANGUAGE

32

 popMatrix();
 rotate(angle);
 line(0, 0, 0, 180);
 translate(0, 180);
 ellipse(0, 0, 30, 30);
 angle += 0.01;
}

Figure 2-15. Using pushMatrix() and popMatrix() to keep transformations separate

 ■ Note For readability of the code, we can consider indenting the code inside push and popMatrix(); many
people use this style to know where a set of transformations start and end. But this is completely optional.

 Responding to User Input
There are many ways to capture user input into our sketch. Keyboard and mouse (touchscreen in the case
of mobile phones) are the most common. Processing provides several built-in variables and functions to
respond to user input. For example, the variables mouseX and mouseY give us the position of the mouse
pointer or touchscreen tap. In the Android mode, these variables represent the position of the first touch
point on the screen (Processing also supports multitouch interaction, which is covered in Chapter 5).
Both mouseX and mouseY are complemented with mousePressed, which indicates whether the mouse/
touchscreen is being pressed. Using these variables, we can create a drawing sketch with very little code, like
the one in Listing 2-14, where we simply draw a semitransparent ellipse at the (mouseX, mouseY) position.
Its output on a phone would look like the one shown in Figure 2-16.

CHAPTER 2 ■ THE PROCESSING LANGUAGE

33

Listing 2-14. A free-hand drawing sketch using circles

void setup() {
 fullScreen();
 noStroke();
 fill(255, 100);
}

void draw() {
 if (mousePressed) {
 ellipse(mouseX, mouseY, 50, 50);
 }
}

Figure 2-16. Drawing with ellipses

While mouseX/Y stores the current position of the mouse/touch, Processing also provides the variables
pmouseX and pmouseY, which store the previous position. By connecting the pmouseX/Y coordinates with the
current ones in mouseX/Y, we can draw continuous lines that follow the movement of the mouse or touch
pointer. Listing 2-15 illustrates this technique, with its output in Figure 2-17.

Listing 2-15. Using current and previous mouse positions

void setup() {
fullScreen();
strokeWeight(5);
stroke(255, 100);
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 }
}

CHAPTER 2 ■ THE PROCESSING LANGUAGE

34

Figure 2-17. Output of the drawing sketch where current and previous mouse positions are connected to
create continuous lines

We have one last example of a drawing sketch in Listing 2-16. Here, we also add a circle at the current
mouse/touch pointer positions. This results in a line that resembles a chain made of connected links
(Figure 2-18). The possibilities are virtually endless; it’s only up to our imagination to come up with cool
ways in which we can convert user input into interactive graphics using code!

Listing 2-16. Another free-hand drawing sketch

void setup() {
 fullScreen();
 strokeWeight(2);
 stroke(0);
 fill(255);
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 ellipse(mouseX, mouseY, 20, 20);
 }
}

CHAPTER 2 ■ THE PROCESSING LANGUAGE

35

Figure 2-18. Combining continuous lines with ellipses in drawing sketch

 Coding a “Vine Drawing” App
Our goal in this final section is to code a drawing app that incorporates code-generated shapes into hand-
drawn lines. One possibility is to augment the scaffold provided by the lines with shapes that resemble
growing vegetation, such as vines and leaves. Instead of trying to arrive to a fully organic look, which may be
hard to do using only the functions we learned so far, we could limit our drawing to regular shapes that still
suggest vegetation through color and randomness. Some sketching with pen and paper (Figure 2-19) may
also help us to explore some visual ideas.

Figure 2-19. Sketches for the vine drawing app

We could draw leaves as clusters of regular polygons with begin/endShape, sprouting from random
positions alongside the hand-drawn lines representing the main branches in the vine. Here, the random()
function in Processing will be very useful to add some randomness to our shapes, so the resulting leaves
do not look too regular. This function returns a floating-point (i.e., with decimal digits) random number
between a minimum and a maximum value. For example, calling random(10, 20) would give us a random
number between 10 and 20, such as 16.8. Every time we run random(), we will get a different result.

CHAPTER 2 ■ THE PROCESSING LANGUAGE

36

Let’s draw a bunch with a random number of leaves. Also, the polygon representing each leaf could
have a random number of sides. The code in Listing 2-17 contains code that does these two things, and
Figure 2-20 shows the several different outputs from this code.

Listing 2-17. Drawing randomized leaves with polygons

size(600, 600);
translate(width/2, height/2);
int numLeaves = int(random(4, 8));
for (int i = 0; i < numLeaves; i++) {
 pushMatrix();
 float leafAngle = random(0, TWO_PI);
 float leafLength = random(100, 250);
 rotate(leafAngle);
 line(0, 0, leafLength, 0);
 translate(leafLength, 0);
 pushStyle();
 noStroke();
 fill(255, 190);
 float r = random(50, 100);
 beginShape();
 int numSides = int(random(4, 8));
 for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/numSides) {
 float x = r * cos(angle);
 float y = r * sin(angle);
 vertex(x, y);
 }
 endShape();
 popStyle();
 popMatrix();
}

Figure 2-20. Different outputs of the leaf drawing sketch

This code gives us a reasonable range of variability in the output, but without being completely random.
There are a couple of new things to note in this code. First, some of the random numbers need to be integer,
for example, the number of leaves. So in that case, we can use the int() function in Processing to convert the

CHAPTER 2 ■ THE PROCESSING LANGUAGE

37

floating-point result from random() into a whole number. Second, we are using another pair of functions
called pushStyle() and popStyle(). Like what push/popMatrix does with transformations, push/popStyle
keeps changes in style (e.g., fill and line color) separate so the changes do not affect any shapes drawn
outside the push/pop block.

We already explored a few options for hand-drawn lines in the previous section. Listing 2-16 produced
an interesting output by combining continuous lines with circles. If we set the lines and leaves to have
bark (brownish) and green colors while also introducing some random variability, we may be able to get a
complete vine drawing sketch. To do so, we could just take the code in Listing 2-17 and copy it inside a user-
defined function that gets called every time we need a bunch of leaves alongside the hand-drawn lines.

One final question is when to draw the leaves. In order to keep our sketch simple, we could make
this step automatic, for example, by using the random() function, but applying randomness all the time is
not always a good idea because the output would feel too random. It’s important that we take purposeful
decisions in our code and do not leave everything to chance! We could try to use the user input so that if
the mouse or touch pointer is moving quickly (e.g., the vine is growing fast), then new leaves are added to
the drawing. An easy way to do this is calculating the distance between the current and previous mouse
positions using the dist() function in Processing just like so: dist(pmouseX, pmouseY, mouseX, mouseY).
Listing 2-18 puts all this together, and Figure 2-21 shows a sample drawing made with the sketch.

Listing 2-18. Full vine drawing sketch

void setup() {
 fullScreen();
 strokeWeight(2);
 stroke(121, 81, 49, 150);
 fill(255);
 background(255);
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 ellipse(mouseX, mouseY, 13, 13);
 if (30 < dist(pmouseX, pmouseY, mouseX, mouseY)) {
 drawLeaves();
 }
 }
}

void drawLeaves() {
 int numLeaves = int(random(2, 5));
 for (int i = 0; i < numLeaves; i++) {
 float leafAngle = random(0, TWO_PI);
 float leafLength = random(20, 100);
 pushMatrix();
 translate(mouseX, mouseY);
 rotate(leafAngle);
 line(0, 0, leafLength, 0);
 translate(leafLength, 0);
 pushStyle();
 noStroke();
 fill(random(170, 180), random(200, 230), random(80, 90), 190);
 float r = random(20, 50);

CHAPTER 2 ■ THE PROCESSING LANGUAGE

38

 beginShape();
 int numSides = int(random(4, 8));
 for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/numSides) {
 float x = r * cos(angle);
 float y = r * sin(angle);
 vertex(x, y);
 }
 endShape();
 popStyle();
 popMatrix();
 }
}

Figure 2-21. Output of the vine drawing sketch

 Summary
We have now a basic knowledge of the Processing language that covers how to draw shapes, set colors, apply
transformations, and handle user interaction through the mouse or touchscreen. Even though we learned
only a small fraction of all the functionality available in Processing, what we saw in this chapter should give
us enough tools to start exploring code-based drawing and to make our own interactive sketches and run
them as Android apps.

CHAPTER 2 ■ THE PROCESSING LANGUAGE

