
39

CHAPTER 3

From Sketch to Play Store

In this chapter, we will go through all the steps involved in the creation of a Processing for Android project,
from sketching and debugging to exporting the project as a signed app ready for upload to the Google Play
Store. We will use the vine drawing sketch from the previous chapter as the project to upload to the store.

 Sketching and Debugging
In the first two chapters, we talked about “code sketching,” where immediate visual output and quick
iteration are key techniques to develop projects with Processing. Another important technique that we
did not mention yet is the identification and resolution of errors or “bugs” in the code, a process called
debugging.

Debugging can take us as much time as writing the code itself. What makes debugging challenging
is that some bugs are the result of faulty logic or incorrect calculations, and because there are no typos
or any other syntactical errors in the code, Processing can still run the sketch. Unfortunately, there is no
foolproof technique to eliminate all bugs in a program, but Processing provides some utilities to help us with
debugging.

 Getting Information from the Console
The simplest way to debug a program is printing the values of variables and messages along various points
of the execution flow of the program. Processing’s API includes text-printing functions, print() and
println(), which output to the console area in the PDE. The only difference between these two functions
is that println() adds a new line break at the end while print() does not. Listing 3-1 shows a sketch using
println() to indicate the occurrence of an event (a mouse press in this case) and the value of built-in variable.

Listing 3-1. Using println() in a sketch to show information on the console

void setup() {
 fullScreen();
}

void draw() {
 println("frame #", frameCount);
}

void mousePressed() {
 println("Press event");
}

© Andrés Colubri 2023
A. Colubri, Processing for Android, https://doi.org/10.1007/978-1-4842-9585-4_3

https://doi.org/10.1007/978-1-4842-9585-4_3

40

Processing’s console shows anything that is printed with these functions, but also warning or error
messages indicating a problem in the execution of the sketch (Figure 3-1).

Figure 3-1. Console area in the PDE, outlined with red

The main problem of printing messages to the console for debugging is that it requires adding these
additional function calls for each variable we want to keep track of. Once we are done with debugging, we
need to remove or comment out all these calls, which can become inconvenient for large sketches.

 ■ Note Comments in Processing work the same way as in Java: we can comment out a single line of code
using two consecutive forward slashes, “//”, and an entire block of text with “/*” at the beginning of the block
and “*/” at the end. We can also use the Comment/Uncomment option under the “Edit” menu in the PDE.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

41

Getting more information with logcat
We can obtain a lot of useful information from the Processing console, but sometimes, this may not be
enough to find out what is wrong with our sketch. The Android SDK includes several command-line tools
that can help us with debugging. The most important SDK tool is adb (Android Debug Bridge), which
makes possible the communication between the computer we are using for development and the device or
emulator. In fact, Processing uses adb under the hood to query what devices are available and to install the
sketch on the device or emulator when running it from the PDE.

We can also use adb manually, for example, to get more detailed debug messages. To do this, we need
to open a terminal console, and once in it, we would need to change to the directory where the Android
SDK is installed. In case the SDK was automatically installed by Processing, it should be located inside the
sketchbook folder, the modes/AndroidMode subfolder. Within that folder, the SDK tools are found in sdk/
platform-tools. Once there, we can run the adb tool with the logcat option, which prints out the log with all
the messages. For instance, the following is the sequence of commands we would need on Mac to run logcat:

$ cd ~/Documents/Processing/android/sdk/platform-tools
$./adb logcat

By default, logcat prints all messages generated by the Android device or emulator, not only from the
sketch we are debugging but also from all processes that are currently running, so we might get too many
messages. The print messages from Processing can be displayed if using logcat with the –I option. Logcat has
additional options to only show error messages (-E) or warnings (-W). The full list of options is available on
the Google’s developer site (https://developer.android.com/tools/logcat).

 Using the Integrated Debugger
The Android mode offers an “integrated debugger” tool that makes it easy to keep track of the internal state
of a running sketch. We turn the debugger on by pressing the button with the butterfly icon on the left of the
menu bar, next to the mode selector, or selecting the “Enable Debugger” in the Debug menu. Once enabled,
we can access many additional options in the PDE to use when the sketch is running. For example, we can
add “checkpoints” to any line in the code of our sketch. A checkpoint signals where the execution of the
sketch should stop to allow us to inspect the value of all the variables in the sketch, both user defined and
built-in.

We can create a new checkpoint by double-clicking on the line number in the left margin of the code
editor. A diamond sign will indicate that the line has flagged with a checkpoint. When we run a sketch
containing one or more checkpoints, Processing will stop execution when it reaches each checkpoint, at
which moment we can inspect the value of the variables using the variable inspector window (Figure 3-2).
We resume execution by pressing the continue button on the toolbar. We can also step line by line by
pressing the Step button and see how each variable changes its value after each line.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://developer.android.com/tools/logcat

42

Figure 3-2. Debugging session with the integrated debugger in the Android mode

All this functionality in the integrated debugger could help us identify bugs in the code without the need
of adding print instructions, although fixing a tricky bug is always challenging and can take a long time even
with the debugger. At the end, it comes down to carefully understanding the logic of the code in the sketch
and its possible consequences and edge cases, based on information we get from the debugger or print
instructions. In this way, we can narrow down the portion of the code where the bug is likely to be.

 Reporting Processing Bugs
Sometimes, an unexpected or erroneous behavior in a Processing sketch may be due not to a bug in our
code, but in Processing itself! If you have strong suspicion that you have found a Processing bug, you can
report it in the GitHub page of the project. If it is a bug affecting the Android mode, please open a new issue
in the processing-android repository at https://github.com/processing/processing-android/issues
and include as much information as possible to reproduce the bug and to help the developers replicate the
bug and eventually fix it.

 Preparing a Sketch for Release
After debugging a sketch in the PDE, we may want to bundle it for public release through Google Play Store.
When working from the PDE, Processing creates a debug app bundle that can only be installed on our own
device or emulator for testing purposes. Creating an app suitable for general distribution from our sketch
requires some additional steps and considerations to make sure it can be uploaded to the Play Store.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://github.com/processing/processing-android/issues

43

 Adjusting for Device’s DPI
A first step to prepare our sketch for public release is to check that it can be run on most of the Android
devices in use. When writing and debugging our sketch, it is often the case that we work with one or only a
few different devices, so it may be hard to anticipate issues on devices we do not have access to. A common
situation is that the graphics might look either too big or too small when running our Processing sketches on
different devices. The reason for this is that both resolution (number of pixels) and physical screen size can
vary quite a lot across phones, tablets, and watches, and so graphic elements designed with one resolution in
mind and viewed on a screen of a particular size will likely look wrong on another. Since Android is designed
to support various combinations of screen sizes and resolutions, we need a way in Processing to adapt the
visual design of our sketch so it looks as intended across different devices.

The ratio of the resolution to the screen size gives what is called the DPI (dots per inch, which, in
the context of computer screens, is equivalent to pixels per inch or PPI). The DPI is the basic magnitude
to compare across devices. It is important to keep in mind that higher DPI does not necessarily mean a
higher resolution, since two different devices with the same resolution may have different screen sizes. For
example, the Galaxy Nexus (4.65” diagonal) has a 720×1280 pixels resolution, while the Nexus 7 (7” diagonal)
has an 800×1280 pixels resolution. The DPIs of these devices are 316 and 216, even though their resolutions
are very similar.

Android classifies devices in density buckets according to the following six generalized densities (a
specific device will fall in one of these categories depending on which one is closest to its actual DPI):

• ldpi (low): ~120dpi

• mdpi (medium): ~160dpi

• hdpi (high): ~240dpi

• xhdpi (extra-high): ~320dpi

• xxhdpi (extra-extra-high): ~480dpi

• xxxhdpi (extra-extra-extra-high): ~640dpi

The generalized density levels are important in Processing to generate the app icons, as we will see later
in this chapter, but not so much when writing our code. To make sure that the visual elements in our sketch
scale properly across different devices, there is another built-in constant from Android that Processing
makes available through its API. This is the “display density,” a number that represents how much bigger
(or smaller) is the pixel in our device when compared with a reference 160 DPI screen (e.g., a 320×480, 3.5"
screen). Thus, on a 160 DPI screen, this density value will be 1; on a 120 DPI screen, it would be .75; etc.

 ■ Note Google’s API Guide on Multiple Screen Support gives detailed information about the density
independence on Android: https://developer.android.com/guide/practices/screens_
support.html.

The display density is available in Processing as the constant named displayDensity, which we can use
from anywhere in our code. The simplest way of adjusting the output to the device’s DPI is to multiply the
size of all the graphical elements in the sketch by displayDensity, which is the approach in Listing 3-2. As
we can see in Figure 3-3, the size of the circles drawn by the sketch is the same across devices with different
DPIs. Also, this example uses the map() function to convert the index variables i and j, which go from 0 to
maxi and maxj, to the coordinate values x and y, which should be in the range (0, width) and (0, height),
respectively.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://developer.android.com/guide/practices/screens_support.html
https://developer.android.com/guide/practices/screens_support.html

44

Listing 3-2. Using displayDensity to adjust our sketch to different screen sizes and resolutions

void setup() {
 fullScreen();
 noStroke();
}

void draw() {
 background(0);
 float r = 50 * displayDensity;
 int maxi = int(width/r);
 int maxj = int(height/r);
 for (int i = 0; i <= maxi; i++) {
 float x = map(i, 0, maxi, 0, width);
 for (int j = 0; j <= maxj; j++) {
 float y = map(j, 0, maxj, 0, height);
 ellipse(x, y, r, r);
 }
 }
}

Figure 3-3. From left to right, output of our sketch on a Samsung Galaxy Tab S3 (9.7”, 20480×1536 px, 264
dpi), a Moto Z4 (6.4”, 2340×1080 px, 403 dpi), and a Pixel 4a (5.81”, 2340×1080 px, 433 dpi)

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

45

We can return now to our vine drawing sketch from the previous chapter and add displayDensity
in the parts of the code where we need to scale the graphics. More specifically, any variable or value that
represents the size of shapes and the position of vertices on the screen, or is related to handling mouse or
touch pointer, should be multiplied by displayDensity. Listing 3-3 shows these changes applied to the
original drawing sketch.

Listing 3-3. Adding displayDensity to the vine drawing sketch from Chapter 2

void setup() {
 fullScreen();
 strokeWeight(2 * displayDensity);
 stroke(121, 81, 49, 150);
 fill(255);
 background(255);
}

void draw() {
 if (mousePressed) {
 line(pmouseX, pmouseY, mouseX, mouseY);
 ellipse(mouseX, mouseY, 13 * displayDensity, 13 * displayDensity);
 if (30 * displayDensity < dist(pmouseX, pmouseY, mouseX, mouseY)) {
 drawLeaves();
 }
 }
}

void drawLeaves() {
 int numLeaves = int(random(2, 5));
 for (int i = 0; i < numLeaves; i++) {
 float leafAngle = random(0, TWO_PI);
 float leafLength = random(20, 100) * displayDensity;
 pushMatrix();
 translate(mouseX, mouseY);
 rotate(leafAngle);
 line(0, 0, leafLength, 0);
 translate(leafLength, 0);
 pushStyle();
 noStroke();
 fill(random(170, 180), random(200, 230), random(80, 90), 190);
 float r = random(20, 50) * displayDensity;
 beginShape();
 int numSides = int(random(4, 8));
 for (float angle = 0; angle <= TWO_PI; angle += TWO_PI/numSides) {
 float x = r * cos(angle);
 float y = r * sin(angle);
 vertex(x, y);
 }
 endShape();
 popStyle();
 popMatrix();
 }
}

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

46

 Using the Emulator
We briefly discussed the emulator in the first chapter. Even when we have our own device, the emulator
could be useful, because it allows us to test hardware configurations that we do not have access to.
Processing creates a default Android Virtual Device (AVD) to run in the emulator, using the Pixel 6 settings
(1080×2400 px, 411 dpi). We can create other AVDs with different properties to test our sketches on, using the
command-line tool avdmanager, included in the Android SDK. We need to keep in mind that the emulator
will likely run slower than an actual device, especially if creating high-resolution AVDs or with other high-
end capabilities.

Since avdmanager is a command-line tool, we first need to open a terminal console and change to
the tools directory where avdmanager and the emulator launcher are located inside the SDK folder. The
sequence of steps to create a new AVD using the device definition for a Pixel C tablet, and then launching
this AVD with the emulator, is as follows:

$ cd ~/Documents/Processing/android/sdk
$ cmdline-tools/latest/bin/avdmanager create avd -n processing-tablet -k "system-
images;android-33;google_apis;x86_64" -d "pixel_c" --skin "pixel_c" -p ~/Documents/
Processing/android/avd/processing-tablet
$ emulator/emulator -avd processing-tablet -gpu auto -port 5566

In the line running the avdmanager command, we provided four arguments:

• -n processing-tablet: The name of the AVD, which could be any name we wish to use.

• -k “system-images;android-33;google_apis;x86_64”: The SDK package to use for the
AVD; to find out which SDK packages are available in our SDK, we need to look at the
system-images subfolder inside the SDK folder.

• -d “pixel_c”: A device definition containing the hardware parameters of the device
we want to emulate. We can list all the available device definitions by running the
command “./avdmanager list devices”.

• --skin “pixel_c”: The name of the skin containing the images that the emulator will
use to draw the frame of the device. This is optional; if a skin name is not provided,
then the emulator window will not have a frame. The skin files need to be included
in the SDK; when the Android mode downloads the default SDK, it also retrieves
some skins from Google’s servers and places them inside the skins subfolder inside
the SDK folder.

• -p ~/Documents/Processing/android/avd/processing-tablet: The folder where
we will store this AVD; in this case, we are using “android/avd/processing-tablet”
inside the sketchbook folder, since this is the default location the mode uses for the
default AVDs.

After we created a new AVD with the avdmanager, we can manually edit the configuration file that
contains all the parameters of the AVD, which, in the case of this example, will be stored in “~/Documents/
Processing/android/avd/ processing-tablet/config.ini”. We can change the skin name and the path by
modifying the values of the parameters skin.name and skin.path, respectively. If we remove the skin path
altogether, we can set the AVD to any arbitrary resolution by entering a value of the form “wxh” as the skin.
name, as shown in Figure 3-4.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

47

Figure 3-4. Adding a skin resolution to the AVD’s config.ini file

In general, the default device definitions together with a matching skin should be enough to have a
working AVD to test our sketches on. The emulator command to launch the AVD includes the following
arguments:

• -avd processing-tablet: The name of the AVD we want to launch.

• -gpu auto: Enables the emulator to use hardware acceleration on the computer
to render the AVD’s screen faster if it is available. Otherwise, it will use a slower
software renderer.

• -port 5566: Sets the TCP port number to connect the console and adb with the
emulator.

To use our new AVD in place of Processing’s default, we should launch it manually as we did in this
example, and then Processing will install our sketches in this AVD instead of the default AVD. However, we
need to make sure to use the right port parameter, because Processing will only be able to communicate
with phone emulators running on port 5566 and watch emulators on port 5576.

 ■ Note Google’s Android developer site includes pages on avdmanager (https://developer.android.
com/tools/avdmanager) and running the emulator from the command line (https://developer.
android.com/studio/run/emulator-commandline.html) where we can find more information about
these tools.

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://developer.android.com/tools/avdmanager
https://developer.android.com/tools/avdmanager
https://developer.android.com/studio/run/emulator-commandline.html
https://developer.android.com/studio/run/emulator-commandline.html

48

 Setting Icons and Bundle Name
Android apps require icons of various sizes to be displayed at different pixel densities in the app launcher
menu. Processing uses a set of default, generic icons when running a sketch from the PDE, but these icons
should not be used for a public release.

To add our own icons to the project, we need to create the following files: icon-36, icon-48, icon-72,
icon-96, icon-144, and icon-192 in .PNG format, for the ldpi (36×36), mdpi (48×48), hdpi (72×27), xhdpi
(96×96), xxhdpi (144×144), and xxxhdpi (192×192) resolutions. Once we have these files, we must place them
in the sketch's folder before exporting the signed bundle.

For the vine drawing app from the previous chapter, we will use the set of icons shown in Figure 3-5.

Figure 3-5. Set of icons for the vine drawing app

Google has published a set of guidelines and resources for icon creation, according to their material UI
style, available at https://m2.material.io/design/platform-guidance/android-icons.html.

 Setting Package Name and Version
Apps in the Google App Store are uniquely identified by a package name, which is a string of text that looks
something like “com.example.helloworld”. This package name follows the Java package naming convention,
where the app name (“helloworld”) is last, preceded by the website of the company or person developing the
app in reverse order (“com.example”).

Processing constructs this package name automatically by prepending a base name to the sketch
name. The default base name is “processing.test”, and we can change it by editing the manifest.xml file that
Processing generates in the sketch folder after we run it for the first time from the PDE (either on a device or
in the emulator). We can also set the version code and version name. For example, in the following manifest
file generated by Processing, the base package name is “com.example”, the version code is 10, and the
version name is 0.5.4:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="10" android:versionName="0.5.4"
 package="com.example">
 <application android:icon="@drawable/icon"
 android:label="Vines Draw">
 <activity android:name=".MainActivity"
 android:theme=

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://m2.material.io/design/platform-guidance/android-icons.html

49

 "@style/Theme.AppCompat.Light.NoActionBar.FullScreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

If we save our sketch as “HelloWorld”, then the full package name will be “com.package.helloworld”
(Processing will set all the letters in the name to lowercase). Note that the package name of our app must
be unique since there cannot be two apps on the Google Play Store with the same package name. Also, we
should set the application name using the android:label attribute in the application tag. Android will use this
label as the visible title of the app in the launcher and other parts of the UI.

 Exporting As Signed Bundle
The Android mode simplifies the publishing of our sketch by signing and aligning the app so we can upload
it to the Google Play Developer Console without any extra additional steps. All we need to do is to select the
“Export Signed Bundle” option under the “File” menu (Figure 3-6).

Figure 3-6. The “Export Signed Bundle” option in the PDE’s “File” menu

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

50

After selecting this option, Processing will ask us to create a new keystore to store the upload key to
sign the app bundle. The keystore requires a password and additional information about the keystore issuer
(name, organization, city, state, country), although those are optional. The keystore manager window that
allows us to enter all this information is displayed in Figure 3-7.

Figure 3-7. Entering the information needed to create a keystore in Processing

Remember this password for the upload key, as you will have to use it every time you export a new
signed bundle. If you lose access to the upload key, or it gets compromised, you can still create a new one
and then contact Google support to reset the key. This is explained in this article from Play Console Help:
https://support.google.com/googleplay/android-developer/answer/9842756.

The signed and aligned bundle will be saved in the build subfolder inside the sketch's folder, under
the name [Sketch name in lowercase]_release.aab. Once we have this file, we can follow the instructions
from Google to complete the app publishing process: https://play.google.com/console/about/guides/
releasewithconfidence/.

If we follow all these steps with our vine drawing sketch, we should be able to generate a signed and
aligned bundle ready to upload to the Play Store. We can also install it manually on our device using the adb
tool from the command line:

$ cd ~/Documents/Processing/android/sdk/platform-tools
$./adb install ~/Documents/Processing/vines_draw/buildBundle/vides_draw_release.aab

If we install the final drawing app bundle either manually or through the Play Store, we should see it in
the app launcher with the icon we created for it (Figure 3-8).

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

https://support.google.com/googleplay/android-developer/answer/9842756
https://play.google.com/console/about/guides/releasewithconfidence/
https://play.google.com/console/about/guides/releasewithconfidence/

51

Figure 3-8. The vine drawing app installed on our device

 Summary
This final chapter in the first part of the book covered several additional important topics, ranging from
debugging our code using Processing’s console, the integrated debugger, or the logcat option in adb; scaling
the output of our sketches according to the device’s DPI; and finally exporting our sketch as signed bundle
to upload to the Play Store. With these tools, we are ready to share our creations with all the Android users
around the world!

CHAPTER 3 ■ FROM SKETCH TO PLAY STORE

